You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
tauri-plugins-workspace/plugins/authenticator/src/u2f_crate/crypto.rs

157 lines
5.1 KiB

// Copyright 2021 Flavio Oliveira
// SPDX-License-Identifier: Apache-2.0
// SPDX-License-Identifier: MIT
//! Cryptographic operation wrapper for Webauthn. This module exists to
//! allow ease of auditing, safe operation wrappers for the webauthn library,
//! and cryptographic provider abstraction. This module currently uses OpenSSL
//! as the cryptographic primitive provider.
// Source can be found here: https://github.com/Firstyear/webauthn-rs/blob/master/src/crypto.rs
#![allow(non_camel_case_types)]
use openssl::{bn, ec, hash, nid, sign, x509};
use std::convert::TryFrom;
// use super::constants::*;
use crate::u2f_crate::u2ferror::U2fError;
use openssl::pkey::Public;
// use super::proto::*;
// Why OpenSSL over another rust crate?
// - Well, the openssl crate allows us to reconstruct a public key from the
// x/y group coords, where most others want a pkcs formatted structure. As
// a result, it's easiest to use openssl as it gives us exactly what we need
// for these operations, and despite it's many challenges as a library, it
// has resources and investment into it's maintenance, so we can a least
// assert a higher level of confidence in it that <backyard crypto here>.
// Object({Integer(-3): Bytes([48, 185, 178, 204, 113, 186, 105, 138, 190, 33, 160, 46, 131, 253, 100, 177, 91, 243, 126, 128, 245, 119, 209, 59, 186, 41, 215, 196, 24, 222, 46, 102]), Integer(-2): Bytes([158, 212, 171, 234, 165, 197, 86, 55, 141, 122, 253, 6, 92, 242, 242, 114, 158, 221, 238, 163, 127, 214, 120, 157, 145, 226, 232, 250, 144, 150, 218, 138]), Integer(-1): U64(1), Integer(1): U64(2), Integer(3): I64(-7)})
//
/// An X509PublicKey. This is what is otherwise known as a public certificate
/// which comprises a public key and other signed metadata related to the issuer
/// of the key.
pub struct X509PublicKey {
pubk: x509::X509,
}
impl std::fmt::Debug for X509PublicKey {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "X509PublicKey")
}
}
impl TryFrom<&[u8]> for X509PublicKey {
type Error = U2fError;
// Must be DER bytes. If you have PEM, base64decode first!
fn try_from(d: &[u8]) -> Result<Self, Self::Error> {
let pubk = x509::X509::from_der(d)?;
Ok(X509PublicKey { pubk })
}
}
impl X509PublicKey {
pub(crate) fn common_name(&self) -> Option<String> {
let cert = &self.pubk;
let subject = cert.subject_name();
let common = subject
.entries_by_nid(openssl::nid::Nid::COMMONNAME)
.next()
.map(|b| b.data().as_slice());
if let Some(common) = common {
std::str::from_utf8(common).ok().map(|s| s.to_string())
} else {
None
}
}
pub(crate) fn is_secp256r1(&self) -> Result<bool, U2fError> {
// Can we get the public key?
let pk = self.pubk.public_key()?;
let ec_key = pk.ec_key()?;
ec_key.check_key()?;
let ec_grpref = ec_key.group();
let ec_curve = ec_grpref.curve_name().ok_or(U2fError::OpenSSLNoCurveName)?;
Ok(ec_curve == nid::Nid::X9_62_PRIME256V1)
}
pub(crate) fn verify_signature(
&self,
signature: &[u8],
verification_data: &[u8],
) -> Result<bool, U2fError> {
let pkey = self.pubk.public_key()?;
// TODO: Should this determine the hash type from the x509 cert? Or other?
let mut verifier = sign::Verifier::new(hash::MessageDigest::sha256(), &pkey)?;
verifier.update(verification_data)?;
Ok(verifier.verify(signature)?)
}
}
pub struct NISTP256Key {
/// The key's public X coordinate.
pub x: [u8; 32],
/// The key's public Y coordinate.
pub y: [u8; 32],
}
impl NISTP256Key {
pub fn from_bytes(public_key_bytes: &[u8]) -> Result<Self, U2fError> {
if public_key_bytes.len() != 65 {
return Err(U2fError::InvalidPublicKey);
}
if public_key_bytes[0] != 0x04 {
return Err(U2fError::InvalidPublicKey);
}
let mut x: [u8; 32] = Default::default();
x.copy_from_slice(&public_key_bytes[1..=32]);
let mut y: [u8; 32] = Default::default();
y.copy_from_slice(&public_key_bytes[33..=64]);
Ok(NISTP256Key { x, y })
}
fn get_key(&self) -> Result<ec::EcKey<Public>, U2fError> {
let ec_group = ec::EcGroup::from_curve_name(openssl::nid::Nid::X9_62_PRIME256V1)?;
let xbn = bn::BigNum::from_slice(&self.x)?;
let ybn = bn::BigNum::from_slice(&self.y)?;
let ec_key = openssl::ec::EcKey::from_public_key_affine_coordinates(&ec_group, &xbn, &ybn)?;
// Validate the key is sound. IIRC this actually checks the values
// are correctly on the curve as specified
ec_key.check_key()?;
Ok(ec_key)
}
pub fn verify_signature(
&self,
signature: &[u8],
verification_data: &[u8],
) -> Result<bool, U2fError> {
let pkey = self.get_key()?;
let signature = openssl::ecdsa::EcdsaSig::from_der(signature)?;
let hash = openssl::sha::sha256(verification_data);
Ok(signature.verify(hash.as_ref(), &pkey)?)
}
}